

MOST: Multi-Source Domain Adaptation via Optimal Transport for Student-Teacher Learning

Tuan Nguyen¹, Trung Le¹, He Zhao¹, Quan Hung Tran², Truyen Nguyen³, and Dinh Phung^{1,4} ¹ Department of Data Science and AI, Monash University, Australia ² Adobe Research, San Jose, CA, USA ³ University of Akron, USA ⁴ VinAI Research, Vietnam

Tuan Nguyen Email: tuan.ng@monash.edu

Introduction Multi-source domain adaptation setting

- Multi-source domain adaptation (MSDA) is a difficult but practical problem, where labelled data are collected from multiple sources.
- Main problem: how to transfer knowledge from multiple source domains to a single unlabeled target domain.

Multi-source domain adaptation setting.

Introduction Optimal Transport (OT)

- OT is a powerful mathematical theory.
- The underlying idea of OT is to seek an optimal plan of transforming one distribution of mass to another.

Illustration of the transport map from continuous density μ_0 to μ_1 . [Papadakis, 2015]

Discrete and continuous formulations of the OT problem. [Peyré and Cuturi, 2018]

N. Papadakis, Optimal Transport for Image Processing, Signal and Image Processing, 2015.

G. Peyré and M. Cuturi, Computational Optimal Transport, arxiv:1803.00567, 2018.

Introduction Optimal Transport (OT)

- OT is a powerful mathematical theory.
- The underlying idea of OT is to seek an optimal plan of transforming one distribution of mass to another.
- OT has been applied to a diverse range of applications including images generation, topic models, shape interpolation and others.
- Clustering view of OT has been utilized to study a rich class of hierarchical and multilevel clustering problems.

Applications of Optimal Transport.

- Two fundamental agents: an expert teacher and a student.
- The former agent knows how to do its job perfectly, whilst the latter learns a policy to mimic the teacher's behavior.

Introduction

• <u>Research question</u>: How can we leverage the clustering view of optimal transport and the learning paradigm of imitation learning to tackle data shift and label shift in multi-source domain adaptation?

Proposed Method

MOST: Multi-Source Domain Adaptation via Optimal Transport for Student-Teacher Learning

- Optimal Transport based Imitation Learning
 - Consider two data domains \mathcal{X}^A and \mathcal{X}^B with two data distributions \mathbb{P}^A and \mathbb{P}^B respectively.
 - h^A is a classifier that predicts well on $\mathbf{x} \sim \mathbb{P}^A$.
 - Goal: learns the classifier h^B to predict accurately $\mathbf{x} \sim \mathbb{P}^B$.

Given $\mathbf{x}_b \sim \mathbb{P}^B$, the optimal transport H^* finds its closest counterpart in the space of data domain \mathcal{X}^A , which is $\mathbf{x}_a = H^*(\mathbf{x}_b)$ so that h^B can predict well on \mathbf{x}_b by conveniently imitating the prediction of h^A on \mathbf{x}_a .

Proposed Method

MOST: Multi-Source Domain Adaptation via Optimal Transport for Student-Teacher Learning

- Main idea
 - Teacher classifier: a weighted combination of domain experts.
 - Student classifier: acts on the target domain and tries to imitate the teacher via the OT-based imitation learning.

The overall structure of our MOST.

Experimental results

MOST: Multi-Source Domain Adaptation via Optimal Transport for Student-Teacher Learning

 MOST achieves state-of-the-art performance on benchmark datasets for multi-source domain adaptation, including Digits-five, Office-Caltech10, and Office-31.

Methods	\rightarrow mm	→mt	→up	→sv	→sy	Avg
LtC-MSDA [1]	85.6	99.0	98.3	83.2	93.0	91.8
MOST	91.5	99.6	98.4	90.9	96.4	95.4

Table 1: Classification results on Digits-five.

Table 2: Classification results on Office-Caltech10

Methods	$ ightarrow \mathbf{W}$	$\rightarrow \mathbf{D}$	$\rightarrow \mathbf{C}$	$\rightarrow \mathbf{A}$	Avg
M^3 SDA [2]	99.5	99.2	92.2	94.5	96.4
MOST	100	100	96.0	96.4	98.1

|--|

Methods	$\rightarrow \mathbf{D}$	$ ightarrow \mathbf{W}$	$\rightarrow \mathbf{A}$	Avg
LtC-MSDA [1]	99.6	97.2	56.9	84.6
MOST	100	98.7	60.6	86.4

[1] H. Wang et al. Learning to combine: Knowledge aggregation for multi-source domain adaptation. In ECCV, 2020.

^[2] X. Peng et al. Moment matching for multi-source domain adaptation. In ICCV, 2019.

Conclusion

- In this work, we propose a *rigorous OT-based theory* to leverage imitation learning into domain adaptation.
- Under imitation learning's perspective, we propose a novel model which utilizes two cooperative agents: teacher and student for multi-source domain adaptation.
- Comprehensive experiments are conducted with state-of-the-art performance on benchmark datasets.

Thanks for your attention Q&A