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Introduction
Motivation

Vulnerable binary 

code?

Source code vulnerability detection Binary code vulnerability detection 

Software vulnerability detection consists of source code and binary code vulnerability detection.

In practice, binary vulnerability detection is more applicable and impactful than source code 

vulnerability detection.
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Introduction

There are some problems of binary software vulnerability detection:

o The shortage of suitable binary datasets labeled as either vulnerable or non-vulnerable. 

o Misclassifying vulnerable code as non-vulnerable is much more severe than many other 

misclassification decisions.

Research question: how to take advantages of deep learning, kernel method and cost-sensitive 

learning to tackle the problems of binary software vulnerability detection?

Our contributions:

o We upgrade the tool to create a new real-world binary dataset.

o We propose a novel Cost-sensitive Kernel Machine that takes into account different kinds of 

misclassification and unbalanced data nature in binary software vulnerability detection.
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Deep Cost-sensitive Kernel Machine
Data Processing and Embedding

Figure 1. An overview of the data processing and embedding process.



8

Deep Cost-sensitive Kernel Machine
Data Processing and Embedding

Figure 2. Machine instruction embedding process with examples.

To embed the opcode, we build a vocabulary of the 

opcodes, and embed them using one-hot vectors to 

obtain the opcode embedding 𝐞𝑜𝑝.

To embed the instruction information, we compute the 

frequency vector as follows:

o We count the frequencies of the hexadecimal bytes to 

obtain a frequency vector with 256 dimensions. 

o The frequency vector is then multiplied by the 

embedding matrix to obtain the instruction information 

embedding 𝐞𝑖𝑖.

Output embedding: 𝐞 = 𝐞𝑜𝑝 ∥ 𝐞𝑖𝑖

where 𝐞𝑜𝑝 = one_hot(𝑜𝑝) ×𝑊𝑜𝑝 and 𝐞𝑖𝑖 = freq 𝑖𝑖 × 𝑊𝑖𝑖
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Deep Cost-sensitive Kernel Machine
General Framework

We fed the machine instruction embedding to a Bidirectional RNN with the sequence length of 𝐿 to 

work out the representation 𝒉 = concat 𝒉𝐿 , 𝒉𝐿 for the binary,

where 𝒉𝐿 and 𝒉𝐿 are the left and right 𝐿-th hidden states of the Bidirectional RNN, respectively. 

Figure 3. General framework of Deep Cost-sensitive Kernel Machine.
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Deep Cost-sensitive Kernel Machine
General Framework

The vector representation is mapped to a random feature space via a random feature map 

where we recruit a cost-sensitive kernel machine to classify vulnerable and non-vulnerable 

binary software. 

Figure 3. General framework of Deep Cost-sensitive Kernel Machine.
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Deep Cost-sensitive Kernel Machine
Cost-sensitive Kernel Machine

Figure 4. Cost-sensitive kernel machine

in the random feature space.

General idea: We first find two parallel hyperplanes

ℋ−1 and ℋ1 in such a way that ℋ−1 and ℋ1 can 

separate the vulnerable and non-vulnerable classes, 

and the margin, which is the distance between the two 

parallel hyperplanes ℋ−1 and ℋ1, is maximized. 

We then find the optimal decision hyperplane ℋ𝑑 by

searching in the strip formed by ℋ−1 and ℋ1.
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Deep Cost-sensitive Kernel Machine
Cost-sensitive Kernel Machine

Finding the optimal decision hyperplane:

We define the cost-sensitive loss and the optimal decision hyperplane 𝒘∗ 𝑇  Φ 𝒉 − 𝑏𝑑
∗ = 0 as:

𝑙 𝒘∗, 𝑏𝑑
𝑚 = 𝜃  

𝑦𝑖𝑘=1

𝕀
𝒘∗ 𝑇  Φ 𝒉𝑖𝑘 −𝑏𝑑

𝑚<0
+  

𝑦𝑖𝑘=−1

𝕀
𝒘∗ 𝑇  Φ 𝒉𝑖𝑘 −𝑏𝑑

𝑚>0

𝑚∗ = argmin
1≤𝑚≤𝑀+1

𝑙 𝒘∗, 𝑏𝑑
𝑚 and 𝑏𝑑

∗ = 𝑏𝑑
𝑚∗

, where 𝜃 = #non − vul: #vul >> 1.

Figure 5. Finding the Optimal Decision Hyperplane.

 compute the cost-sensitive loss.

 obtain the optimal decision hyperplane

which is corresponding to the minimal loss value.

 search the hyperplane in the strip.

Steps to find the optimal decision hyperplane:  
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Experiment
Datasets

We collected the source code from two datasets 

on GitHub: NDSS181 and six open-source 

projects2 then processed to create 2 labeled 

binary datasets.

We split the data into 80% for training, 10% for 

validation, and the remaining 10% for testing.

We ran our experiments on a computer with an 

Intel Xeon Processor E5-1660 which had 8 

cores at 3.0 GHz and 128 GB of RAM.

1 https://github.com/CGCL-codes/VulDeePecker 
2 https://github.com/DanielLin1986/TransferRepresentationLearning 

The implementation of our model and the binary datasets for reproducing the experimental results can 

be found online at https://github.com/tuanrpt/DCKM.

https://github.com/tuanrpt/DCKM
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Experiment
Experimental Results

The experimental results (%) except for the column CS of the proposed method compared with the 

baselines on NDSS18 binary dataset (left) and the binary dataset from the six open-source projects (right). 

Pre, Rec, and CS are shorthand for the performance measures precision, recall, and cost-sensitive loss, 

respectively.
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Experiment
Model Behaviors

Our optimal decision hyperplane marked with the red stars can achieve the minimal cost-sensitive loss, 

while maintaining comparable F1 and AUC scores compared with the optimal-F1 hyperplane marked with 

the purple stars.

Figure 7. The variation of predictive scores when sliding the hyperplane in the strip formed by ℋ−1

and ℋ1: on the NDSS18 (left) and the dataset from six open-source projects (right).
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Conclusion

In this work, we have leveraged deep learning and kernel methods to propose the Deep Cost-sensitive 

Kernel Machine for tackling binary software vulnerability detection. 

Our proposed method inherits the advantages of deep learning methods in efficiently tackling structural 

data and kernel methods in learning the characteristic of vulnerable binary examples with high 

generalization capacity. 

We upgrade the tool to create a new real-world binary dataset.

The experimental results have shown a convincing outperformance of our proposed method compared 

to the state-of-the-art baselines.
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