
Tuan Nguyen1, Trung Le1, Khanh Nguyen2, Olivier de Vel3, Paul Montague3,

John Grundy1, and Dinh Phung1

1 Monash University, Australia
2 AI Research Lab, Trusting Social, Australia

3 Defence Science and Technology Group, Australia

Tuan Nguyen

Master Student, Machine Learning and Data Science

Faculty of Information Technology, Monash University

Email: tuan.ng@monash.edu

AGENDA

Introduction

• Software vulnerability detection

• Binary vulnerability detection

Deep Cost-sensitive Kernel Machine

• Data Processing and Embedding

• Cost-sensitive Kernel Machine

Experiment

• Experimental Results

• Model Behaviors

Conclusion

AGENDA

Introduction

• Software vulnerability detection

• Binary vulnerability detection

Deep Cost-sensitive Kernel Machine

Experiment

Conclusion

4

Introduction
Motivation

Vulnerable binary

code?

Source code vulnerability detection Binary code vulnerability detection

Software vulnerability detection consists of source code and binary code vulnerability detection.

In practice, binary vulnerability detection is more applicable and impactful than source code

vulnerability detection.

5

Introduction

There are some problems of binary software vulnerability detection:

o The shortage of suitable binary datasets labeled as either vulnerable or non-vulnerable.

o Misclassifying vulnerable code as non-vulnerable is much more severe than many other

misclassification decisions.

Research question: how to take advantages of deep learning, kernel method and cost-sensitive

learning to tackle the problems of binary software vulnerability detection?

Our contributions:

o We upgrade the tool to create a new real-world binary dataset.

o We propose a novel Cost-sensitive Kernel Machine that takes into account different kinds of

misclassification and unbalanced data nature in binary software vulnerability detection.

AGENDA

Introduction

Deep Cost-sensitive Kernel Machine

• Data Processing and Embedding

• Cost-sensitive Kernel Machine

Experiment

Conclusion

7

Deep Cost-sensitive Kernel Machine
Data Processing and Embedding

Figure 1. An overview of the data processing and embedding process.

8

Deep Cost-sensitive Kernel Machine
Data Processing and Embedding

Figure 2. Machine instruction embedding process with examples.

To embed the opcode, we build a vocabulary of the

opcodes, and embed them using one-hot vectors to

obtain the opcode embedding 𝐞𝑜𝑝.

To embed the instruction information, we compute the

frequency vector as follows:

o We count the frequencies of the hexadecimal bytes to

obtain a frequency vector with 256 dimensions.

o The frequency vector is then multiplied by the

embedding matrix to obtain the instruction information

embedding 𝐞𝑖𝑖.

Output embedding: 𝐞 = 𝐞𝑜𝑝 ∥ 𝐞𝑖𝑖

where 𝐞𝑜𝑝 = one_hot(𝑜𝑝) ×𝑊𝑜𝑝 and 𝐞𝑖𝑖 = freq 𝑖𝑖 × 𝑊𝑖𝑖

9

Deep Cost-sensitive Kernel Machine
General Framework

We fed the machine instruction embedding to a Bidirectional RNN with the sequence length of 𝐿 to

work out the representation 𝒉 = concat 𝒉𝐿 , 𝒉𝐿 for the binary,

where 𝒉𝐿 and 𝒉𝐿 are the left and right 𝐿-th hidden states of the Bidirectional RNN, respectively.

Figure 3. General framework of Deep Cost-sensitive Kernel Machine.

10

Deep Cost-sensitive Kernel Machine
General Framework

The vector representation is mapped to a random feature space via a random feature map

where we recruit a cost-sensitive kernel machine to classify vulnerable and non-vulnerable

binary software.

Figure 3. General framework of Deep Cost-sensitive Kernel Machine.

11

Deep Cost-sensitive Kernel Machine
Cost-sensitive Kernel Machine

Figure 4. Cost-sensitive kernel machine

in the random feature space.

General idea: We first find two parallel hyperplanes

ℋ−1 and ℋ1 in such a way that ℋ−1 and ℋ1 can

separate the vulnerable and non-vulnerable classes,

and the margin, which is the distance between the two

parallel hyperplanes ℋ−1 and ℋ1, is maximized.

We then find the optimal decision hyperplane ℋ𝑑 by

searching in the strip formed by ℋ−1 and ℋ1.

12

Deep Cost-sensitive Kernel Machine
Cost-sensitive Kernel Machine

Finding the optimal decision hyperplane:

We define the cost-sensitive loss and the optimal decision hyperplane 𝒘∗ 𝑇 Φ 𝒉 − 𝑏𝑑
∗ = 0 as:

𝑙 𝒘∗, 𝑏𝑑
𝑚 = 𝜃

𝑦𝑖𝑘=1

𝕀
𝒘∗ 𝑇 Φ 𝒉𝑖𝑘 −𝑏𝑑

𝑚<0
+

𝑦𝑖𝑘=−1

𝕀
𝒘∗ 𝑇 Φ 𝒉𝑖𝑘 −𝑏𝑑

𝑚>0

𝑚∗ = argmin
1≤𝑚≤𝑀+1

𝑙 𝒘∗, 𝑏𝑑
𝑚 and 𝑏𝑑

∗ = 𝑏𝑑
𝑚∗

, where 𝜃 = #non − vul: #vul >> 1.

Figure 5. Finding the Optimal Decision Hyperplane.

 compute the cost-sensitive loss.

 obtain the optimal decision hyperplane

which is corresponding to the minimal loss value.

 search the hyperplane in the strip.

Steps to find the optimal decision hyperplane:

AGENDA

Introduction

Deep Cost-sensitive Kernel Machine

Experiment

• Experimental Results

• Model Behaviors

Conclusion

14

Experiment
Datasets

We collected the source code from two datasets

on GitHub: NDSS181 and six open-source

projects2 then processed to create 2 labeled

binary datasets.

We split the data into 80% for training, 10% for

validation, and the remaining 10% for testing.

We ran our experiments on a computer with an

Intel Xeon Processor E5-1660 which had 8

cores at 3.0 GHz and 128 GB of RAM.

1 https://github.com/CGCL-codes/VulDeePecker
2 https://github.com/DanielLin1986/TransferRepresentationLearning

The implementation of our model and the binary datasets for reproducing the experimental results can

be found online at https://github.com/tuanrpt/DCKM.

https://github.com/tuanrpt/DCKM

15

Experiment
Experimental Results

The experimental results (%) except for the column CS of the proposed method compared with the

baselines on NDSS18 binary dataset (left) and the binary dataset from the six open-source projects (right).

Pre, Rec, and CS are shorthand for the performance measures precision, recall, and cost-sensitive loss,

respectively.

16

Experiment
Model Behaviors

Our optimal decision hyperplane marked with the red stars can achieve the minimal cost-sensitive loss,

while maintaining comparable F1 and AUC scores compared with the optimal-F1 hyperplane marked with

the purple stars.

Figure 7. The variation of predictive scores when sliding the hyperplane in the strip formed by ℋ−1

and ℋ1: on the NDSS18 (left) and the dataset from six open-source projects (right).

AGENDA

Introduction

Deep Cost-sensitive Kernel Machine

Experiment

Conclusion

18

Conclusion

In this work, we have leveraged deep learning and kernel methods to propose the Deep Cost-sensitive

Kernel Machine for tackling binary software vulnerability detection.

Our proposed method inherits the advantages of deep learning methods in efficiently tackling structural

data and kernel methods in learning the characteristic of vulnerable binary examples with high

generalization capacity.

We upgrade the tool to create a new real-world binary dataset.

The experimental results have shown a convincing outperformance of our proposed method compared

to the state-of-the-art baselines.

Thanks for your attention

Q&A

