=~ MONASH
University &3t

SINGAPORE

Deep Cost-sensitive Kernel Machine

for Binary Software Vulnerability Detection

Tuan Nguyen', Trung Le', Khanh Nguyen?, Olivier de Vel3, Paul Montague?®,
John Grundy’, and Dinh Phung’




AGENDA

Introduction

» Software vulnerability detection
* Binary vulnerability detection

Deep Cost-sensitive Kernel Machine

» Data Processing and Embedding
* Cost-sensitive Kernel Machine

* Experimental Results
 Model Behaviors

Conclusion
‘ GROUP
OF EIGHT
AUSTRALIA




AGENDA

» Software vulnerability detection
* Binary vulnerability detection

GROUP
OF EIGHT
AUSTRALIA



Introduction

Motivation

Source code vulnerability detection Binary code vulnerability detection

Byte Instruction (4 bytes)

static int sipsock_read(int *id, int fd, short events, void *ignore) A 90 83 60 90 30 << 09 FF FF 08
r = 26 2o (21] [ a 08
truct sip_request req; ee 8 € Q 0 58
truct ast_sockaddr addr; 00 00 ee 0o 0e 00 F8
int res; oF BA 00 1 B8 © A
static char readbuf[65535]; 72
62 20
. \ 64 2E
memset(&req, ©, sizeof(req)):; &> =2
00
res = ast_recvfrom(fd, readbuf, sizeof(readbuf) - 1, @, &addr); 2 ;
28 oA
if (res < @) { 88 81
#if !defined(__FreeBSD__) BF )

93 BB 93 BE 12 4D BB
83 ebD « 88 22 2 BA 02 4 88
if- (errno-==-EAGAIN) 80 4D BA 38 2E 4D BB 38 BB 2C B2 @1 4D BB .
ast_log(LOG_NOTICE, -"SIP: Received packet with bad UDP checksum\n"); 8B a4 01 88 88 89 o1 4D BB Q Vulnerable blnary
else 52 ) 63 00 <D BB 08 96
#endif 20 20 00 00 58 45 00 a( 85 d ?
if (errno != ECONNREFUSED) 18 Fa 86 €0 20 22 @9 20 08 Ee 82 code:
)): 8B 01 eE E 00 1 09 ae g0

ast_log(LOG_WARNING, "Recv error: %s\n", strerror(errno));

if (!(req.data = ast_str_create(SIP_MIN_PACKET))) {

if (ast_str_set(&req.data, @, "%s", readbuf) == AST_DYNSTR_BUILD_FAILED) {
return--1;

e Software vulnerability detection consists of source code and binary code vulnerability detection.

e In practice, binary vulnerability detection is more applicable and impactful than source code
vulnerability detection.



Introduction

e There are some problems of binary software vulnerability detection:
The shortage of suitable binary datasets labeled as either vulnerable or non-vulnerable.

Misclassifying vulnerable code as non-vulnerable is much more severe than many other
misclassification decisions.

e Research question: how to take advantages of deep learning, kernel method and cost-sensitive
learning to tackle the problems of binary software vulnerability detection?

e Our contributions:
We upgrade the tool to create a new real-world binary dataset.

We propose a novel Cost-sensitive Kernel Machine that takes into account different kinds of
misclassification and unbalanced data nature in binary software vulnerability detection.



AGENDA

Deep Cost-sensitive Kernel Machine

» Data Processing and Embedding
* Cost-sensitive Kernel Machine

GROUP
OF EIGHT
AUSTRALIA



Deep Cost-sensitive Kernel Machine

Data Processing and Embedding

Source code

void ast_jb_get_and_deliver(struct
ast_channel *c0, struct ast_channel *c1) ||f 1. detect and fix
{ syntax errors

»{ 61000000 000000000000 000000 000000

Binaries

4c 01 0a 00 00 00 00 00 56 08 00 00 1b 00 00 00
00000401 2e7465787400000000000000
00000000 c8000000a4010000ac070000
0000000001000000200030602e646174

struct ast_jb *jb0 = ast_channel_jb(c0);

2. compile
struct ast_jb *jb1 = ast_channel_jb(c1); functisns
int JB_USE;

opcodes

3. disassemble '1"2;
binaries 15:

Assembly code

0000000f <_ast_jb_get_and_deliver>:

83 ec28
8b 45 08

sub esp,0x28
mov eax,DWORD PTR [ebp+0x8]

00000000 000000000000 000000000000
400030c02e627373 000000 0000000000
00000000 000000000000 000000000000

instruction information

ec 28
45 08
04 24
ea ff ff ff
45 fc

5. obtain opcodes
and instruction information

Y

18: 8904 24
1b: e8 ea ff ff ff
20: 89 45 fc

mov DWORD PTR [esp],eax
call a<_ast_channel_jb>
mov DWORD PTR [ebp-0x4],eax

machine instructions

83 ec28
8b 45 08
8904 24
e8 ea ff ff ff
89 45 fc

4. get machine
instructions

A

Figure 1. An overview of the data processing and embedding process.



Deep Cost-sensitive Kernel Machine

Data Processing and Embedding

e To embed the opcode, we build a vocabulary of the
opcodes, and embed them using one-hot vectors to
obtain the opcode embedding ey,

¢ 1o embed the instruction information, we compute the
frequency vector as follows:

We count the frequencies of the hexadecimal bytes to
obtain a frequency vector with 256 dimensions.

The frequency vector is then multiplied by the
embedding matrix to obtain the instruction information
embedding e;;.

¢ Outputembedding: e = e, Il e;;
where e,,, = one_hot(op) x W°P and e;; = freq(ii) X wt

opcode instruction information
48 c7 4518140000

| |

one-hot(op) freq(ii)
0 0 1 0 - 0 0 0] [2 0 - 0 1 0 3 0]

lx Wop (- RVXd lx W” (= RZSGXCI

d d
eo-pEIR \q% elLER

e € R%d

Figure 2. Machine instruction embedding process with examples.



Deep Cost-sensitive Kernel Machine

General Framework

e We fed the machine instruction embedding to a Bidirectional RNN with the sequence length of L to
work out the representation h = concat(h;, ;) for the binary,
where (I_zL and ﬁL are the left and right L-th hidden states of the Bidirectional RNN, respectively.

Random feature space

______ 1 | | r—-——-—=-- | e | O
| | 1 |
I G 0
| : 1 : I 1 | 1 O
LN H LN E LN [N HO
! @ | P\ e _:-@T @)
g S ! g S PR S e
1’4 U V U V U 14 u O .
| | RZ; ]dee ]RZZ RZZ O
uf _Lf—] _L‘_] uf ; Cost-sensitive Kernel Machine in random feature space

.m
3
o
@
=4
._f;
3
o
1]
o
E
3
o
o
a1
l(D
3
o
@
o
7

Figure 3. General framework of Deep Cost-sensitive Kernel Machine.



Deep Cost-sensitive Kernel Machine

General Framework

e The vector representation is mapped to a random feature space via a random feature map
where we recruit a cost-sensitive kernel machine to classify vulnerable and non-vulnerable
binary software.

Random feature space

s

=

=)

> ﬁﬁé :@
|OOOO0O0O

¥
o

Cost-sensitive Kernel Machine in random feature space

.m
3
o
@
=4
._f;
3
o
1]
o
E
3
o
o
a1
l(D
3
o
@
o
7

Figure 3. General framework of Deep Cost-sensitive Kernel Machine.




Deep Cost-sensitive Kernel Machine

Cost-sensitive Kernel Machine

e General idea: We first find two parallel hyperplanes
H_4 and H in such a way that H'_, and H; can
separate the vulnerable and non-vulnerable classes,

and the margin, which is the distance between the two
parallel hyperplanes H_; and H;, is maximized.

e We then find the optimal decision hyperplane #; by
searching in the strip formed by H_, and ;.

o
RE AN

[
. o o * "o'
. ‘.l'l'-

@
. ::‘ﬁ::::..s:etsn" . "1| (nOH‘VUD ‘.‘: %-
CREICIR e e P
g T ’ '35
o T@(h) = bd R = % 1o

w . ‘
(w) &L S 208 g
— v . re . ‘ '5.

@, - e

{le]

Figure 4. Cost-sensitive kernel machine
in the random feature space.

Recall increasi(d



Deep Cost-sensitive Kernel Machine

Cost-sensitive Kernel Machine

e Finding the optimal decision hyperplane:
We define the cost-sensitive loss and the optimal decision hyperplane (w*)T ®(h) — b; = 0 as:

[(w",bg") = 6 z I *)ch lk) b < T Z H *)Tq>( lk) bI>0

ylk_l
*

m* = argmin [(w*,b]") and b; = bJ* ,Where 9 = #non — vul: #vul >> 1.

Ism=M+1
Hoa

(W*)Ta)(h) — bil =0
Steps to find the optimal decision hyperplane: -

@ search the hyperplane in the strip. wHTdM) —ba=0

@ compute the cost-sensitive loss. .

® obtain the optimal decision hyperplane *
which is corresponding to the minimal loss value. e

W ®(h) — by =0

Figure 5. Finding the Optimal Decision Hyperplane.




AGENDA

* Experimental Results
 Model Behaviors

GROUP
OF EIGHT
AUSTRALIA



Experiment

Datasets

e We collected the source code from two datasets

on GitHub: NDSS18" and six open-source Table 1. The statistics of the two binary datasets.
projects? then processed to create 2 labeled #Non-vul| #Vul [#Binaries
binary datasets. Windows| 8,999 |8, 978 | 17,977
. . . NDSS18 | Linux | 6,955 | 7,349 14,304
e We split the data into 80% for training, 10% for Whole | 15,954 |16,327| 32,281
validation, and the remaining 10% for testing. Windows| 26,621 | 328 | 26,949
e We ran our experiments on a computer with an 6 open-source Linux | 25,660 | 290 | 25,950
P P Whole | 52,281 | 618 | 52,809

Intel Xeon Processor E5-1660 which had 8
cores at 3.0 GHz and 128 GB of RAM.

e The implementation of our model and the binary datasets for reproducing the experimental results can
be found online at https://github.com/tuanrpt/DCKM.

1 https://github.com/CGCL-codes/VulDeePecker
2 https://github.com/DanielLin1986/TransferRepresentationLearning


https://github.com/tuanrpt/DCKM

Experiment

Experimental Results

e The experimental results (%) except for the column CS of the proposed method compared with the

baselines on NDSS18 binary dataset (left) and the binary dataset from the six open-source projects (right).

Pre, Rec, and CS are shorthand for the performance measures precision, recall, and cost-sensitive loss,

respectively.
Datasets Windows Linux Whole Datasets Windows Linux Whole
Methods Pre | F1 |Rec |[AUC CS |[Pre | F1 |Rec |AUC CS |Pre | F1 |Rec |[AUC CS Methods Pre | F1 |[Rec |AUC CS |Pre |F1 [Rec [AUC CS |Pre | F1 [Rec [AUC CS
Para2Vec 17.5124.11389 | 67.6 098 (36.4 |44.4 |57.1 | 77.6 0.83 |28.6 [26.7 (25.0 | 61.9 0.96 Para2Vec 28.9(131.0|33.3| 66.2 0.96]|19.2(24.0/32.1| 65.3 0.98(28.1|126.9(25.8| 62.5 0.97
Vdiscover 58.8|57.1155.6(77.4 0.90 [52.9 [58.1 |64.3 |81.6 0.68 |48.4 |47.6 (469 | 72.9 0.93 Vdiscover 23.3|22.2121.2| 60.2 0.98|42.1(34.0|28.6| 64.1 0.92(18.0|/13.9(11.3| 55.3 0.98
BRNN-C 80.0|84.2|88.9(194.2 0.89 [76.9 |74.1 |71.4 |85.5 0.65 |84.6 |75.9 |68.7 | 84.2 0.87 BRNN-C 42.9(125.5|18.2| 59.0 0.97|53.9(34.2|125.0] 624 0.93]|43.2|32.3|25.8| 62.7 0.95
BRNN-D 77.8|77.8|77.8|88.7 092 [92.3 |88.9 |85.792.8 0.68 |85.2 |78.0 [71.9 | 85.8 0.81 BRNN-D 30.8(27.1|124.2| 61.8 0.96]|46.2(29.3|21.4| 60.6 0.96(36.7|125.3(19.4| 59.5 0.98
VulDeePecker [70.0(73.7|77.8 | 88.6 0.98 |80.0 [82.8 |85.7 |92.6 0.70 |85.2 |78.0 |71.9 | 85.8 0.84 VulDeePecker [31.6(23.1|18.2| 58.9 0.97(53.9(|34.2|125.0| 62.4 0.94|65.5|41.8]/30.7| 65.2 0.93
BRNN-SVM [79.0|181.1|183.3|91.4 0.98|92.3 [88.9 [85.7 |92.8 0.68 |85.7 |80.0 |75.0 | 87.4 0.84 BRNN-SVM [73.9]160.7|51.5| 75.6 0.98|87.5/63.6|50.0| 75.0 0.99|65.6(/65.0|64.5| 82.1 0.91
Att-BGRU  [92.3(77.4|66.7 | 83.3 0.97 (92.3 |88.9 |85.7 |92.8 0.68 |86.5 (79.3 |71.9 | 85.8 (.82 Att-BGRU 70.8|59.7|51.5| 75.6 0.92]|100 (56.4|39.3| 69.7 0.93|85.1|73.4{64.5| 82.2 091
Text CNN 92.3(77.4/66.7|83.3 0.99 [91.7 |84.6 |78.6 | 89.2 0.74 [84.6 |75.9 |68.7 | 84.2 0.85 Text CNN 100 |70.6|54.6( 77.3 0.90|81.8(72.0(64.3| 82.0 0.89|100|74.8({59.7| 79.8 091
MDSAE 77.7|186.4197.2 | 84.4 0.11 |80.6 [88.3 |97.7 | 86.8 0.05 |78.4 |87.1 |98.1 |85.2 0.72 MDSAE 88.2160.0(45.5]| 72.7 0.91{60.0|41.9|32.1| 66.0 0.93(82.4(74.3|167.7| 83.8 0.90
OC-DeepSVDD |[91.7|73.3|61.1 | 80.5 0.19| 100 | 83.3|71.4| 857 0.14(85.5|78.1(71.9]| 83.1 0.84 OC-DeepSVDD| 100 |77.8|63.6| 81.8 0.83|88.9/69.6(57.1| 78.5 0.90|100|70.8|54.8| 77.4 0.89
DCKM 84.2186.5|88.9 | 94.3 0.06 929 (92.9 1929 | 96.4 0.03 |87.1 |85.7 |84.4 |92.1 0.58 DCKM 79.4|80.6|81.8| 90.8 0.78|90.0(75.0/64.3| 82.1 0.85(90.3/190.3(90.3| 95.1 0.56




Experiment

Model Behaviors

e Our optimal decision hyperplane marked with the red stars can achieve the minimal cost-sensitive loss,
while maintaining comparable F1 and AUC scores compared with the optimal-F1 hyperplane marked with
the purple stars.

150 1001 ! 80
90 i [
4 11
40 |
1 « 90 - | 60
I k= <
= % 5 801! 40°G
@ ! 200 9 @
80 - : : :n_u [ :2
1 |7, | [ wv
! s © 7011 F20 S
! !
754 1] P
1 1 1 1
o 60 1 ilo
00 02 04 06 08 10 00 02 04 06 08 10
O--H., ®m-H, — precision —F1 —— recall AUC —— cost + optimalF1 * optimal cost

Figure 7. The variation of predictive scores when sliding the hyperplane in the strip formed by H_4
and H;: on the NDSS18 (left) and the dataset from six open-source projects (right).



AGENDA

Conclusion
‘ GROUP
OF EIGHT
AUSTRALIA




Conclusion

¢ In this work, we have leveraged deep learning and kernel methods to propose the Deep Cost-sensitive
Kernel Machine for tackling binary software vulnerability detection.

e Our proposed method inherits the advantages of deep learning methods in efficiently tackling structural
data and kernel methods in learning the characteristic of vulnerable binary examples with high
generalization capacity.

e We upgrade the tool to create a new real-world binary dataset.

e The experimental results have shown a convincing outperformance of our proposed method compared
to the state-of-the-art baselines.



- Thanks for your attention
— Q&A



